19 Mount St, Auckland 1010, NZ
glyconz@aut.ac.nz

Find a glycoconjugate

Glycoconjugates for Glycobiology

Click a drop down from the categories to find the glycoconjugate for your work


Class of glycan-binding protein you study

GALECTINS

 

References:

  • Rapoport EM, Bovin NV. Specificity of human galectins on cell surfaces. Biochemistry (Mosc). (2015) Jul;80(7):846-56. DOI: https://doi.org/10.1134/S0006297915070056
  • Rapoport EM, Matveeva VK, Kaltner H, André S, Vokhmyanina OA, Pazynina GV, Severov VV, Ryzhov IM, et al: Comparative lectinology: Delineating glycan-specificity profiles of the chicken galectins using neoglycoconjugates in a cell assay. Glycobiology. (2015) Jul;25(7):726-34. DOI: https://doi.org/10.1093/glycob/cwv012
  • Vokhmyanina OA, et al: Comparative study of the glycan specificities of cell-bound human tandem-repeat-type galectin-4, -8 and -9. Glycobiology. (2012) Sep;22(9):1207-17. DOI: https://doi.org/10.1093/glycob/cws079
  • Rapoport EM, et al: Solid-phase assays for study of carbohydrate specificity of galectins. Biochemistry (Mosc). (2010) Mar;75(3):310-9. DOI: https://doi.org/10.1134/S0006297910030077

 

SIGLECS

 

References:

  • Otto DM, et al: An expression system for screening of proteins for glycan and protein interactions. Anal Biochem. (2011) Apr 15;411(2):261-70. DOI: https://doi.org/10.1016/j.ab.2010.12.036
  • Hudson SA, et al: Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6'-sulfated sialyl Lewis x. J Pharmacol Exp Ther. (2009) Aug;330(2):608-12. DOI: 10.1124/jpet.109.152439
  • Rapoport EM, et al: Probing sialic acid binding Ig-like lectins (siglecs) with sulfated oligosaccharides. Biochemistry (Mosc). (2006) May;71(5):496-504. DOI: https://doi.org/10.1134/S0006297906050051

SELECTINS

 

References:

  • Pochechueva, T.V., et al: P-selectin blocking potency of multimeric tyrosine sulfates in vitro and in vivo. Bioorgan. Med. Chem. Lett. 13, 1709–1712 (2003). DOI: 10.1016/s0960-894x(03)00234-8
  • Weitz-Schmidt, G., et al: An E-selectin binding assay based on polyacrylamide-type glycoconjugates. Anal. Biochem. 238, 184–190 (1996). DOI: https://doi.org/10.1006/abio.1996.0273
  • Game, S.M., et al: Scintillation proximity assay for E-, P-, and L-selectin utilizing polyacrylamide-based neoglycoconjugates as ligands. Anal. Biochem. 258, 127–135 (1998). DOI: 10.1006/abio.1998.2576

DC-SIGN

 

References:

  • Geurtsen J, et al: Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol. (2009) Oct 15;183(8):5221-31. DOI: 10.4049/jimmunol.0900768

DENDRITIC CELLS

 

References:

  • Gabius, H.-J., et al: Reverse lectin histochemistry: design and application of glycoligands for detection of cell and tissue lectins. Histol. Histopathol. 8, 369–383 (1993). Read Review
  • Rapoport, E.M., et al: Glycan recognition by human blood mononuclear cells with an emphasis on dendritic cells. Glycoconj. J. 35, 191–203 (2018). https://doi.org/10.1007/s00440-002-0236-0

VIRAL LECTINS

 

References:

  • Suenaga E, et al: Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. Biosens Bioelectron. (2012) Feb 15;32(1):195-201. DOI: 10.1016/j.bios.2011.12.003
  • Matrosovich, M.N., Gambaryan, A.S.: Solid-phase assays of receptor-binding specificity. Methods Mol. Biol. 865, 71–94 (2012). https://doi.org/10.1007/978-1-61779-621-0_5
  • Ryzhikov AB, et al: Recombinant SARS-CoV-2 S Protein Binds to Glycans of the Lactosamine Family in vitro. Biochemistry (Mosc). (2021) Mar;86(3):243-247. DOI: https://doi.org/10.1134/S0006297921030019
  • Matrosovich, M. et al: Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74, 8502–8512 (2000). DOI: 10.1128/jvi.74.18.8502-8512.2000
  • Gambaryan, A.et al: Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res. 114, 15–22 (2005). DOI: 10.1016/j.virusres.2005.05.005
  • Gambaryan, A. et al: H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO(3))GlcNAc-containing receptors. Virology. 326, 310–316 (2004). DOI: 10.1016/j.virol.2004.06.002
  • Gambaryan, A. et al: Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology. 334, 276–283 (2005). DOI: 10.1016/j.virol.2005.02.003
  • Gambaryan, A.S. et al: 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol. J. 5, 85 (2008). DOI: https://doi.org/10.1186/1743-422X-5-85
  • Mochalova, L. et al: Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology. 313, 473–480 (2003). DOI: 10.1016/s0042-6822(03)00377-5
  • Gambaryan, A. et al: Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties of H1N1 human influenza a virus grown in MDCK cells and in embryonated eggs. Virology. 247, 170–177 (1998). 10.1006/viro.1998.9224
  • Gambaryan, A., et al: Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology. 344, 432–438 (2006). DOI: https://doi.org/10.1016/j.virol.2005.08.035
  • Keleta, L. et al: Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2. J. Virol. 82, 11599–11608 (2008). DOI: 10.1128/JVI.01393-08
  • Barbé L, et al: Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci Rep. (2018) Aug 28;8(1):12961. DOI: 10.1038/s41598-018-31005-4

BACTERIAL LECTINS

Various ligands, please contact us to discuss more

References:

  • Perret S, et al: Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J. 2005 Jul 15;389(Pt 2):325-32. DOI: 10.1042/BJ20050079

SERUM ANTIBODIES

Various ligands, please contact us to discuss more

References:

  • Obukhova P, et al: Natural anti-A and anti-B of the ABO system: allo- and autoantibodies have different epitope specificity. Transfusion. (2012) Apr;52(4):860-9. DOI: 10.1111/j.1537-2995.2011.03381.x
  • Obukhova, P., et al: Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology. 30, 395–406 (2020). https://doi.org/10.1093/glycob/cwz107
  • Dobrochaeva, K., et al: Human antibodies eluted from ligand free Sepharose capable of binding bacterial polysaccharides and sulfated glycans. Molec. Immunol. 106, 63–68 (2019). https://doi.org/10.1016/j.molimm.2018.12.011
  • Pochechueva, T., et al: Multiplex suspension array for human anti-carbohydrate antibody profiling. Analyst. 136, 560–569 (2011). https://doi.org/10.1039/c0an00758g
  • Pochechueva, T., et al: Blood plasma-derived anti-glycan antibodies to sialylated and sulphated glycans identify ovarian cancer patients. PLoS One. 11(10), e0164230 (2016). https://doi.org/10.1371/journal.pone.0164230
  • Breiman A, et al: Low Levels of Natural Anti-α-N-Acetylgalactosamine (Tn) Antibodies Are Associated With COVID-19. Front Microbiol. (2021) Feb 11;12:641460. DOI: 10.3389/fmicb.2021.641460
  • Dobrochaeva K, et al: Human Natural Antibodies Recognizing Glycan Galβ1-3GlcNAc (LeC). Int J Mol Sci. (2020) Sep 5;21(18):6511. DOI: 10.3390/ijms21186511

XENO-ABs

GNZ IDOligosaccharideTrivialUnit [mg]Price [USD]
0009Galα1-3Galβ1-4(Fucα1-3)GlcNAcβ-sp3-[series]Galα3`Lex1$700
0018Neu5Gcα-sp3-[series]α-N-glycolylneuraminic acid1$350
0069Galα1-6Glcβ-sp4-[series]Melibiose1$175
0070Galα1-3Galβ1-4GlcNAcβ-sp3-[series]Galili1$350
0088Galα1-3Galβ-sp3-[series]Bdi1$280
0737aGalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ-sp4-[series]Fs51POA
0771GalNAcα1-3GalNAcβ1-3Galβ-sp3-[series]Fs31POA
0835aNeu5Acα2-3(GalNAcβ1-4)Galβ1-4Glcβ-sp4-[series]GM20.5$700
0857Galα1-3Galβ1-4GlcNAcβ1-3Galβ-sp3-[series]Galili (tetra)1$700
0860GalNAcα1-3(Fucα1-2)Galβ1-3GalNAcα-sp3-[series]A (type 3)1$1,050
0956Neu5Gcα2-3Galβ1-4GlcNAcβ-sp3-[series]3`Sia(Gc)LacNAc0.5$875
0957Neu5Gcα2-6Galβ1-4GlcNAcβ-sp3-[series]6`Sia(Gc)LacNAc0.5$525
0962Neu5Gcα2-3Galβ1-3GlcNAcβ-sp3-[series]Neu5Gcα3`Lec1POA
0971Galα1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-sp4-[series]Galili (penta)1POA
0975aNeu5Gcα2-3Galβ1-4Glcβ-sp3-[series]Neu5Gcα3`Lac1POA
0984Neu5Acα2-6(Galβ1-3)GalNAcα-sp3-[series]6SiaTF0.5$525

 

 

References:

  • Obukhova, P., et al: Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology. 30, 395–406 (2020). https://doi.org/10.1093/glycob/cwz107
  • Gerber, B., et al: Differences between synthetic oligosaccharide immunoabsorbents in depletion capacity for xenoreactive anti-Galα1-3Gal antibodies from human serum. Xenotransplantation. 8, 106–114 (2001). DOI:
  • Dobrochaeva K, et al: Specificity profile of αGal antibodies in αGalT KO mice as probed with comprehensive printed glycan array: Comparison with human anti-Galili antibodies. Xenotransplantation. (2021) Jan 12:e12672. DOI: https://doi.org/10.1111/xen.12672

CANCER-RELATED ABs

GNZ IDOligosaccharideTrivialUnit [mg]Price [USD]
0004GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4GlcNAcβ-sp2-[series]Tk1$525
0030GalNAcα-sp3-[series]Tn1$175
0043Galβ1-3GlcNAcβ-sp3Lec1$263
0048Galβ1-3GalNAcα-sp3-[series]TF, core 11$263
0056Galβ1-3GalNAcβ-sp3-[series]Tββ1$263
0058Neu5Acα2-6GalNAcα-sp3-[series]SiaTn0.5$350
0773Galβ1-3GalNGcα-sp3-[series]TF(Gc)1$350
0835aNeu5Acα2-3(GalNAcβ1-4)Galβ1-4Glcβ-sp4-[series]GM20.5$700
0863GalNAcα-Oser-[series]Tn1POA
0964Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ-sp4-[series]Gb51POA
0983Neu5Gcα2-6GalNAcα-sp3-[series]Neu5GcTn1POA

 

References:

  • Pochechueva, T., et al: Multiplex suspension array for human anti-carbohydrate antibody profiling. Analyst. 136, 560–569 (2011). https://doi.org/10.1039/C0AN00758G
  • Pochechueva, T., et al: Blood plasma-derived anti-glycan antibodies to sialylated and sulphated glycans identify ovarian cancer patients. PLoS One. 11(10), e0164230 (2016). https://doi.org/10.1371/journal.pone.0164230
  • Dobrochaeva K, et al: Human Natural Antibodies Recognizing Glycan Galβ1-3GlcNAc (LeC). Int J Mol Sci. 2020 Sep 5;21(18):6511. DOI: 10.3390/ijms21186511
  • Dobrochaeva K, et al: Specificity of human natural antibodies referred to as anti-Tn. Mol Immunol. 2020 Apr;120:74-82. DOI: 10.1016/j.molimm.2020.02.005

mABs

Various ligands, please contact us to discuss more

References:

  • Barr K, et al: Mapping the fine specificity of ABO monoclonal reagents with A and B type-specific function-spacer-lipid constructs in kodecytes and inkjet printed on paper. Transfusion. (2014) Oct;54(10):2477-84. DOI: https://doi.org/10.1111/trf.12661
  • Williams E, et al: Glycomapping the fine specificity of monoclonal and polyclonal Lewis antibodies with type-specific Lewis kodecytes and function-spacer-lipid constructs printed on paper. Transfusion. (2016) Feb;56(2):325-33. DOI:
  • Blixt O, et al: Analysis of Tn antigenicity with a panel of new IgM and IgG1 monoclonal antibodies raised against leukemic cells. Glycobiology. (2012) Apr;22(4):529-42. DOI: https://doi.org/10.1093/glycob/cwr178
  • Chugh M, et al: Glycoprotein CA19.9-specific monoclonal antibodies recognize sialic acid-independent glycotope. Tumour Biol. (2017) Oct;39(10):1010428317725434. DOI: 10.1177/1010428317725434
  • Barr K, et al: Monoclonal anti-A activity against the FORS1 (Forssman) antigen. Transfusion. (2015) Jan;55(1):129-36. DOI:

GLYCOSYL T

GNZ IDOligosaccharideTrivialUnit [mg]Price [USD]
0008Galα1-4Galβ1-4GlcNAcβ-sp3-[series]P11$525
0037Galα1-4Galβ1-4Glcβ-sp2-[series]Pk, Gb3, GbOse31$613
0042Fucα1-2Galβ1-3GlcNAcβ-sp3-[series]Led, H (type 1)1$420
0046Galβ1-4Glcβ-sp2-[series]Lac1$175
0047Galβ1-4GlcNAcβ-sp3-[series]N-acetyllactosamine1$263
0048Galβ1-3GalNAcα-sp3-[series]TF, core 11$263
0089Fucα1-2Galβ1-4GlcNAcβ-sp3-[series]H (type 2)1$420

References:


Class of the glycoprobe to be used

PA Series: Unlabelled Neoglycoconjugates

PAA is poly[N-(2-hydroxyethyl)acrylamide], flexible polymer chain serves as an additional spacer.

Mr approx. 30 kDa (according to gel-filtration, proteins as Mr markers).

Carbohydrate content is 20% mol.

The composition of the conjugates is confirmed by acid hydrolysis followed by HPLC.

Spacer-arm for oligosaccharides is normally -(CH2)3-

Label – none

View PA Series Catalogue

References:

  • Obukhova P, et al: Natural anti-A and anti-B of the ABO system: allo- and autoantibodies have different epitope specificity. Transfusion. (2012) Apr;52(4):860-9. DOI: https://doi.org/10.1111/j.1537-2995.2011.03381.x
  • Meichenin, et al: Tk, a new colon tumor-associated antigen resulting from altered O-glycosylation. Cancer Res. 60, 5499–5507 (2000). Read Here
  • Khraltsova, L.S., et al: An enzyme-linked lectin assay for α1,3-galactosyltransferase. Anal. Biochem. 280, 250–257 (2000). DOI: 10.1006/abio.2000.4504
  • Pochechueva, T.V., et al: P-selectin blocking potency of multimeric tyrosine sulfates in vitro and in vivo. Bioorgan.Med. Chem. Lett. 13, 1709–1712 (2003). DOI: 10.1016/s0960-894x(03)00234-8
  • Obukhova, P., et al: Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology. 30, 395–406 (2020). https://doi.org/10.1093/glycob/cwz107

BM Series: Biotinylated Monomeric Probes

The probes have an elongated spacer giving them the possibility to bind avidin or streptavidin.

 

The biotin fragment is hydrophobic enough to permit the probes to be adsorbed on SepPack C18 cartridges from aqueous solutions and to be eluted by methanol similarly to glycosides bearing a “Lemieux-type” space.

 

The spacer is the normal spacer of the ligand plus own spacer (sp) of biotin label –CO(CH2)5NH-

 

View BM Series Catalogue

 

References:

BP Series: Biotinylated Polymeric Probes

PAA is poly[N-(2-hydroxyethyl)acrylamide], used as a high molecular weight carrier, has low non-specific sorption and it is stable to chemical and proteolytic action.

 

The affinity of the probes is 102 – 105 times higher than that of the corresponding free sugars.

 

HOCH2CH2NH3+-salts for acidic sugars

 

Spacer-arm is normally –(CH2)3-, spacer arm for biotin is –(CH2)6-.

 

The flexible polymer chain behaves as an additional spacer.

 

Mr approx. 30kDa

 

Content: saccharide 20% mol., biotin 5% mol.

 

Purity: synthetic ω-aminoalkyl glycosides used for coupling with the polymer have a purity >95% (HPLC and 1H-NMR)

 

View BP Series Catalogue

 

References:

  • Suenaga E, et al: Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. Biosens Bioelectron. (2012) Feb 15;32(1):195-201. DOI: 10.1016/j.bios.2011.12.003
  • Chinarev, A.A., et al: Biotinylated multivalent glycoconjugates for surface coating. Methods Mol. Biol. 600, 67–78 (2010). DOI: 10.1007/978-1-60761-454-8_5
  • Rye, P.D., Bovin, N.V.: Selection of carbohydrate-binding cell phenotypes using oligosaccharide-coated magnetic particles. Glycobiology. 7, 179–182 (1997). DOI: https://doi.org/10.1093/glycob/7.2.179
  • Geurtsen J, et al: Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol. (2009) Oct 15;183(8):5221-31. DOI: 10.4049/jimmunol.0900768

FP Series: Fluorescein-labelled Polymeric Probes

Probes designed to reveal lectins (including selectins) directly on cell membranes, organelles, and in the cytoplasm.

 

The low fluorescein content does not affect the probe solubility in water but it still allows a reliable probe detection.

 

PAA used as a molecular weight carrier demonstrated an absence of non-specific interaction with cells and it is stable to chemical and proteolytic action.

 

The affinity of the probes is 102 – 105 times higher than that of corresponding free sugars.

 

PAA is poly[N-(2-hydroxyethyl)acrylamide], a flexible polymer chain that serves as an additional spacer.

 

Mr approx. 30kDa

 

Content: carbohydrate 20% mol. Label – fluorescein, 2%

 

View FP Series Catalogue

 

References:

  • Kurmyshkina, O., et al: Glycoprobes as a tool for the study of lectins expressed on tumor cells. Acta Histochem. 112, 118–126 (2010). DOI: 10.1016/j.acthis.2009.01.004
  • Rapoport, E.M., et al: Glycan recognition by human blood mononuclear cells with an emphasis on dendritic cells. Glycoconj. J. 35, 191–203 (2018). https://doi.org/10.1007/s10719-017-9811-6
  • Galanina, O., et al: Fluorescent carbohydrate probes for cell lectins. Spectrochim. Acta A. 57, 2285–2296 (2001). DOI: 10.1016/s1386-1425(01)00478-4
  • Galanina, et al: Carbohydrate-based probes for detection of cellular lectins. Anal. Biochem. 265, 282–289 (1998). DOI: 10.1006/abio.1998.2859
  • Dutta, S., et al: Sulfated Lewis a trisaccharide on oviduct membrane glycoproteins binds bovine sperm and lengthens sperm lifespan. J. Biol. Chem. 294, 13445–13463 (2019). https://doi.org/10.1074/jbc.RA119.007695
  • Silva, E., et al: Lactadherin is a candidate oviduct Lewis X trisaccharide receptor on porcine spermatozoa. Andrology 5, 589–597 (2017). https://doi.org/10.1111/andr.12340

FF Series: Sepharose-based Affinity Adsorbents

Affinity adsorbents are obtained by conjugation of Sug-PAA to aminated Sepharose6FF*; density of Sug groups in the composition of the polymer corresponds to one of Sug-PAA, i.e. 20% mol. Capacity is 0.6 μmol/ml of adsorbent.

Regeneration can be made at pH 11-12 without loss of quality; Store condition is in a 20% ethyl alcohol at 4°C.

We recommend using regenerated adsorbent <10 times.

Elution of bound proteins (lectins, antibodies) can be performed by acidic buffers (pH 2.5-3) or by basic buffers (pH 9-10); borate containing buffers are not applicable.)

 

FSL Series: Synthetic Glycolipids

Synthetic glycolipids from Kode Biotech

Function-Spacer-Lipid constructs

 

References:

  • Barr K, et al: Mapping the fine specificity of ABO monoclonal reagents with A and B type-specific function-spacer-lipid constructs in kodecytes and inkjet printed on paper. Transfusion. (2014) Oct;54(10):2477-84. DOI: https://doi.org/10.1111/trf.12661
  • Korchagina EY, Henry SM: Synthetic glycolipid-like constructs as tools for glycobiology research, diagnostics, and as potential therapeutics. Biochemistry (Mosc). (2015) Jul;80(7):857-71. DOI: https://doi.org/10.1134/S0006297915070068
  • Williams E, et al: Glycomapping the fine specificity of monoclonal and polyclonal Lewis antibodies with type-specific Lewis kodecytes and function-spacer-lipid constructs printed on paper. Transfusion. (2016) Feb;56(2):325-33. DOI: https://doi.org/10.1111/trf.13384

Glycochip

Glycoarrays

View Glycochip

 

References:

  • Alvarez RA, Blixt O.: Identification of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol. (2006);415:292-310. DOI: 10.1016/S0076-6879(06)15018-1 . PMID: 17116481
  • Blixt O, et al: Glycan microarrays for screening sialyltransferase specificities. Glycoconj J. (2008) Jan;25(1):59-68. DOI: https://doi.org/10.1007/s10719-007-9062-z
  • McCombs JE, et al: Glycan specificity of neuraminidases determined in microarray format. Carbohydr Res. (2016) Jun 16;428:31-40. DOI: 10.1016/j.carres.2016.04.003

Glycobeads

Glycobeads

 

 

References:

  • Chinarev, A.A., et al: Biotinylated multivalent glycoconjugates for surface coating. Methods Mol. Biol. 600, 67–78 (2010). DOI: 10.1007/978-1-60761-454-8_5
  • Rye, P.D., Bovin, N.V.: Selection of carbohydrate-binding cell phenotypes using oligosaccharide-coated magnetic particles. Glycobiology. 7, 179–182 (1997). https://doi.org/10.1093/glycob/7.2.179
  • Pochechueva, T., et al: Multiplex suspension array for human anti-carbohydrate antibody profiling. Analyst. 136, 560–569 (2011). https://doi.org/10.1039/c0an00758g
  • Pochechueva, T., et al: Blood plasma-derived anti-glycan antibodies to sialylated and sulphated glycans identify ovarian cancer patients. PLoS One. 11(10), e0164230 (2016). https://doi.org/10.1371/journal.pone.0164230

By the assay system, you are going to apply

Enzyme Immunoassay

Please see the following publications relating to enzyme immunoassays with the glycoconjugates

Contact us for more information

 

References:

  • Meichenin, M et al. “Tk, a new colon tumor-associated antigen resulting from altered O-glycosylation.” Cancer research vol. 60,19 (2000): 5499-507. DOI: https://pubmed.ncbi.nlm.nih.gov/11034094/
  • Khraltsova, L.S., et al. "An enzyme-linked lectin assay for α1,3-galactosyltransferase." Anal. Biochem. vol 280, 2 (2000): 250–257. DOI: https://doi.org/10.1006/abio.2000.4504
  • Obukhova, P., et al. "Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals?" Glycobiology. vol 30, 6 (2020): 395–406. DOI: https://doi.org/10.1093/glycob/cwz107
  • Pochechueva T, et al. "Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies. Glycoconj J. 28 (2011): 507-17. DOI: 10.1007/s10719-011-9349-y

 

Printed Glycan Array

Please see the following publications relating to Printed Glycan Array with the glycoconjugates

Contact us for more information

 

References:

  • Navakouski, M., et al. "Improved spot morphology for printed glycan arrays." BioTechniques. 64 (2018): 110–116. DOI: 10.2144/btn-2017-0111
  • Hudson SA, et al. "Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6'-sulfated sialyl Lewis x". J Pharmacol Exp Ther. 330,2 (2009): 608-12. DOI: 10.1124/jpet.109.152439

Flow cytometry

Please see the following publications relating to flow cytometry with the glycoconjugates

Contact us for more information

 

References:

  • Rapoport, E.M., et al. "Glycan recognition by human blood mononuclear cells with an emphasis on dendritic cells." Glycoconj. J. 35 (2018): 191–203. DOI: https://doi.org/10.1007/s10719-017-9811-6
  • Galanina, et al. "Carbohydrate-based probes for detection of cellular lectins". Anal. Biochem. 265 (1998): 282–289. DOI: 10.1006/abio.1998.2859

Bioplex

Please see the following publications relating to Bioplex with the glycoconjugates

Contact us for more information

 

References:

  • Pochechueva, T., et al. "Multiplex suspension array for human anti-carbohydrate antibody profiling." Analyst. 136 (2011): 560–569. ROI: https://doi.org/10.1039/c0an00758g
  • Pochechueva, T., et al. "Blood plasma-derived anti-glycan antibodies to sialylated and sulphated glycans identify ovarian cancer patients." PLoS One. 11(10), e0164230 (2016). https://doi.org/10.1371/journal.pone.0164230

Fluorescent microscopy

Please see the following publications relating to Fluorescent microscopy with the glycoconjugates

Contact us for more information

 

References:

  • Kurmyshkina, Olga et al. “Glycoprobes as a tool for the study of lectins expressed on tumor cells.” Acta histochemica vol. 112,2 (2010): 118-26. DOI: 10.1016/j.acthis.2009.01.004
  • Galanina, O et al. “Fluorescent carbohydrate probes for cell lectins.” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy vol. 57,11 (2001): 2285-96. DOI: 10.1016/s1386-1425(01)00478-4

Surface Plasmon Resonance

Please see the following publications relating to Surface Plasmon Resonance with the glycoconjugates

Contact us for more information

 

References:

  • Linman, Matthew J et al. “Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides.” Analytical chemistry vol. 80,11 (2008): 4007-13. DOI: 10.1021/ac702566e
  • Uchida, Hideaki et al. “A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin.” Bioscience, biotechnology, and biochemistry vol. 68,5 (2004): 1004-10. DOI: 10.1271/bbb.68.1004
  • Suenaga, Emi et al. “Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance.” Biosensors & bioelectronics vol. 32,1 (2012): 195-201. DOI: 10.1016/j.bios.2011.12.003

Radioactive assays

Please see the following publications relating to Radioactive assays with the glycoconjugates

Contact us for more information

 

References:

  • Game, S M et al. “Scintillation proximity assay for E-, P-, and L-selectin utilizing polyacrylamide-based neoglycoconjugates as ligands.” Analytical biochemistry vol. 258,1 (1998): 127-35. DOI: 10.1006/abio.1998.2576

By biomedicine area

Transfusiology

Please see the following publications relating to tranfusiology with the glycoconjugates

Contact us for more information

 

References:

  • Williams, Eleanor et al. “Glycomapping the fine specificity of monoclonal and polyclonal Lewis antibodies with type-specific Lewis kodecytes and function-spacer-lipid constructs printed on paper.” Transfusion vol. 56,2 (2016): 325-33. DOI: 10.1111/trf.13384
  • Obukhova P, et al. "Natural anti-A and anti-B of the ABO system: allo- and autoantibodies have different epitope specificity." Transfusion. vol 52,4 (2012):860-9. DOI: https://doi.org/10.1111/j.1537-2995.2011.03381.x
  • Frame T, et al. "Synthetic glycolipid modification of red blood cell membranes." Transfusion. vol 47,5 (2007): 876-82. DOI: https://doi.org/10.1111/j.1537-2995.2007.01204.x

Allo- & Xeno-transplantology

Please see the following publications relating to Allo- & Xeno-transplantology with the glycoconjugates

Contact us for more information

 

References:

  • Perry H, et al: A standardized kodecyte method to quantify ABO antibodies in undiluted plasma of patients before ABO-incompatible kidney transplantation. Transfusion. (2019) Jun;59(6):2131-2140. DOI: https://doi.org/10.1111/trf.15247
  • Obukhova, P., et al: Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology. 30, 395–406 (2020). https://doi.org/10.1093/glycob/cwz107
  • Dobrochaeva K, et al: Specificity profile of αGal antibodies in αGalT KO mice as probed with comprehensive printed glycan array: Comparison with human anti-Galili antibodies. Xenotransplantation. (2021) Jan 12:e12672. DOI:

Oncology

Please see the following publications relating to oncology with the glycoconjugates

Contact us for more information

 

References:

  • Meichenin, et al: Tk, a new colon tumor-associated antigen resulting from altered O-glycosylation. Cancer Res. 60, 5499–5507 (2000). DOI: Read here
  • Kurmyshkina, O., et al: Glycoprobes as a tool for the study of lectins expressed on tumor cells. Acta Histochem. 112, 118–126 (2010). DOI: 10.1016/j.acthis.2009.01.004
  • Pochechueva, T., et al: Multiplex suspension array for human anti-carbohydrate antibody profiling. Analyst. 136, 560–569 (2011). DOI: https://doi.org/10.1039/c0an00758g
  • Pochechueva, T., et al: Blood plasma-derived anti-glycan antibodies to sialylated and sulphated glycans identify ovarian cancer patients. PLoS One. 11(10), e0164230 (2016). DOI: https://doi.org/10.1371/journal.pone.0164230
  • Dobrochaeva K, et al: Human Natural Antibodies Recognizing Glycan Galβ1-3GlcNAc (LeC). Int J Mol Sci. (2020) Sep 5;21(18):6511. DOI: 10.3390/ijms21186511

Fertilisation, Gynecology

Please see the following publications relating to Fertilisation, Gynecology with the glycoconjugates

Contact us for more information

 

References:

  • Dutta, S., et al: Sulfated Lewis a trisaccharide on oviduct membrane glycoproteins binds bovine sperm and lengthens sperm lifespan. J. Biol. Chem. 294, 13445–13463 (2019). https://doi.org/10.1074/jbc.RA119.007695
  • Silva, E., et al: Lactadherin is a candidate oviduct Lewis X trisaccharide receptor on porcine spermatozoa. Andrology 5, 589–597 (2017). https://doi.org/10.1111/andr.12340
  • Sharif M, et al: Progesterone induces porcine sperm release from oviduct glycans in a proteasome-dependent manner. Reproduction. 2021 Apr;161(4):449-457. DOI: 10.1530/REP-20-0474

Virology

Please see the following publications relating to virology with the glycoconjugates

Contact us for more information

 

References:

  • Matrosovich, M.N., Gambaryan, A.S.: Solid-phase assays of receptor-binding specificity. Methods Mol. Biol. 865, 71–94 (2012). https://doi.org/10.1007/978-1-61779-621-0_5
  • Matrosovich, M. et al: Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74, 8502–8512 (2000). DOI: 10.1128/jvi.74.18.8502-8512.2000
  • Gambaryan, A.et al: Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res. 114, 15–22 (2005). DOI: 10.1016/j.virusres.2005.05.005
  • Gambaryan, A. et al: H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO(3))GlcNAc-containing receptors. Virology. 326, 310–316 (2004)
  • Gambaryan, A. et al: Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology. 334, 276–283 (2005). DOI: 10.1016/j.virol.2004.06.002
  • Gambaryan, A.S. et al: 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol. J. 5, 85 (2008). https://doi.org/10.1186/1743-422X-5-85
  • Mochalova, L. et al: Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology. 313, 473–480 (2003). DOI: 10.1016/s0042-6822(03)00377-5
  • Gambaryan, A. et al: Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties of H1N1 human influenza a virus grown in MDCK cells and in embryonated eggs. Virology. 247, 170–177 (1998). DOI: 10.1006/viro.1998.9224
  • Gambaryan, A., et al: Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology. 344, 432–438 (2006). https://doi.org/10.1016/j.virol.2005.08.035
  • Keleta, L. et al: Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2. J. Virol. 82, 11599–11608 (2008). DOI: 10.1128/JVI.01393-08

HTPS of small molecule drugs

Please see the following publications relating to HTPS of small molecule drugs with the glycoconjugates

Contact us for more information

 

References:

  • Weitz-Schmidt, G., et al: An E-selectin binding assay based on polyacrylamide-type glycoconjugates. Anal. Biochem. 238, 184–190 (1996). DOI: 10.1006/abio.1996.0273
  • Game, S.M., et al: Scintillation proximity assay for E-, P-, and L-selectin utilizing polyacrylamide-based neoglycoconjugates as ligands. Anal. Biochem. 258, 127–135 (1998). DOI: 10.1006/abio.1998.2576

Neuroscience

Please see the following publications relating to neuroscience with the glycoconjugates

Contact us for more information

 

References:

  • Tsvetkov YE, et al: Synthesis and molecular recognition studies of the HNK-1 trisaccharide and related oligosaccharides. The specificity of monoclonal anti-HNK-1 antibodies as assessed by surface plasmon resonance and STD NMR. J Am Chem Soc. (2012) Jan 11;134(1):426-35. DOI: https://doi.org/10.1021/ja2083015

Histochemistry

Please see the following publications relating to histochemistry with the glycoconjugates

Contact us for more information

 

References:

  • Gabius, H.-J., et al: Reverse lectin histochemistry: design and application of glycoligands for detection of cell and tissue lectins. Histol. Histopathol. 8, 369–383 (1993). Read review
  • Kurmyshkina, O., et al: Glycoprobes as a tool for the study of lectins expressed on tumor cells. Acta Histochem. 112, 118–126 (2010). DOI: 10.1016/j.acthis.2009.01.004
  • Galanina, O., et al: Fluorescent carbohydrate probes for cell lectins. Spectrochim. Acta A. 57, 2285–2296 (2001). DOI: 10.1016/s1386-1425(01)00478-4

SARS-CoV-2

Please see the following publications relating to SARS-CoV-2 with the glycoconjugates

Contact us for more information

 

References:

  • Ryzhikov AB, et al: Recombinant SARS-CoV-2 S Protein Binds to Glycans of the Lactosamine Family in vitro. Biochemistry (Mosc). 2021 Mar;86(3):243-247. DOI: https://doi.org/10.1134/S0006297921030019
  • Breiman A, et al: Low Levels of Natural Anti-α-N-Acetylgalactosamine (Tn) Antibodies Are Associated With COVID-19. Front Microbiol. 2021 Feb 11;12:641460. DOI: 10.3389/fmicb.2021.641460

 19 total views